产品分类>>

联系大家>>

无锡市东富达科技有限企业
地址:江苏省无锡市惠山区盛岸西路592号
联系人:贺先生
电话:18015334576
网站:www.dfdmvt.com

当前位置:365亚洲版登录 > 行业动态 行业动态

视觉表面缺陷检测系统基本组成

     中国是一个制造大国,每天都要生产大量的工业产品。用户和生产企业对产品质量的要求越来越高,除要求满足使用性能外,还要有良好的外观,即良好的表面质量。但是,在制造产品的过程中,表面缺陷的产生往往是不可避免的。

     人工检测是产品表面缺陷的传统检测方法,该方法抽检率低、准确性不高、实时性差、效率低、劳动强度大、受人工经验和主观因素的影响大,而基于机器视觉的检测方法可以很大程度上克服上述弊端。

     机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。机器视觉检测系统通过适当的光源和图像传感器(CCD摄像机)获取产品的表面图像,利用相应的图像处理算法提取图像的特征信息,然后根据特征信息进行表面缺陷的定位、识别、分级等判别和统计、存储、查询等操作;      视觉表面缺陷检测系统基本组成主要包括 图像获取模块 、 图像处理模块 、 图像分析模块 、 数据管理及人机接口模块 。

1618881126(1).jpg

图像获取模块

     图像获取模块由CCD摄像机、光学镜头、光源及其夹持装置等组成,其功能是完成产品表面图像的采集。在光源的照明下,通过光学镜头将产品表面成像于相机传感器上,光信号先转换成电信号,进而转换成计算机能处理的数字信号。

图像处理模块

     图像处理模块主要涉及图像去噪、图像增强与复原、缺陷的检测和目标分割。

     由于现场环境、CCD图像光电转换、传输电路及电子元件都会使图像产生噪声,这些噪声降低了图像的质量从而对图像的处理和分析带来不良影响,所以要对图像进行预处理以去噪。

     图像增强目是针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果的图像处理方法。

      图像复原是通过计算机处理,对质量下降的图像加以重建或复原的处理过程。图像复原很多时候采用与图像增强同样的方法,但图像增强的结果还需要下一阶段来验证;而图像复原试图利用退化过程的先验常识,来恢复已被退化图像的本来面目,如加性噪声的消除、运动模糊的复原等。

      图像分割的目的是把图像中目标区域分割出来,以便进行下一步的处理。

图像分析模块

      图像分析模块主要涉及特征提取、特征选择和图像识别。

      特征提取的作用是从图像像素中提取可以描述目标特性的表达量,把不同目标间的差异映射到低维的特征空间,从而有利于压缩数据量、提高识别率。

      表面缺陷检测通常提取的特征有纹理特征、几何形状特征、颜色特征、变换系数特征等,用这些多信息融合的特征向量来可靠地区分不同类型的缺陷;这些特征之间一般存在冗余信息,即并不能保证特征集是最优的,好的特征集应具备简约性和鲁棒性,为此,还需要进一步从特征集中选择更有利于分类的特征,即特征的选择。

      图像识别主要根据提取的特征集来训练分类器,使其对表面缺陷类型进行正确的分类识别。


上一条:视觉表面缺陷检测主要问题和发展趋势
下一条:表面缺陷检测的聚类算法
点击次数:26更新时间:2021-05-11

365亚洲版登录|bat365旧网址

XML 地图 | Sitemap 地图